

#### LA-UR-21-21691

Approved for public release; distribution is unlimited.

Title: Biomedical Research at Los Alamos National Laboratory

Author(s): Lenz, Kiersten Danielle

Intended for: Community Outreach

Issued: 2021-02-22





## **Biomedical Research at Los Alamos National Laboratory**

Kiersten Lenz

February 26, 2021

## **Background**

- Originally from NY
- Attended the University of Delaware
  - Biology & Psychology double major
  - Master's of Arts in Teaching (+1 year)
- Taught high school AP Biology for 2 years
- Taught middle school Science for 1 year
- Went back to school for a second Master's Degree
  - Master's of Science in Biomedical Engineering









# **Background**

- Currently live in Los Alamos, NM
- Research Technologist at Los Alamos National Laboratory (LANL)
  - Also did my Master's thesis work at LANL
  - Chemistry for Biomedical Applications Team
  - Focus on biosensors research





## **Los Alamos National Laboratory**

- Department of Energy national laboratory
- Established in 1943 as part of the Manhattan Project
- Currently performs research in diverse fields
  - National security
  - Nuclear fusion
  - Energy
  - Space exploration
  - Medicine and Biology





## **Daily Tasks**

#### Lab Manager

- Inventory
- Scheduling equipment maintenance
- Laboratory documentation (biosafety)
- Scheduling and organizing team meetings

#### Research Projects

- Weekly meetings with teams to plan experiments
- Long-term planning how to accomplish goals of specific projects
- Planning and executing experiments
- Data analysis which guides future experiments
- Designing and building microfluidic devices





# **Major Research Areas**

1. Biosensors

2. Microfluidics



## **Biosensors**





# Biosensors – how they work





## Biosensors – how they work





## **Microfluidics**

- Commonly called "Lab on a Chip"
- Miniaturization of laboratory processes
  - Clinical pharmaceutical trials
  - Personalized medicine
  - Sample processing
  - Biosensors









## **Microfluidics**

- Involves:
  - Iterative design
  - Biological compatibility
  - Additive manufacturing
  - 3D printing
  - Imaging
  - More!



Example: "lung on a chip"



## **Our Biosensor**





#### **Biomarkers of Interest**

- Biomarker: molecules that are useful indicators of disease state
  - Can be your own biomarkers
    - HDL & LDL (cholesterol)
  - Can be pathogenic biomarkers
    - Molecules secreted by bacteria, viruses, etc. upon infection
    - Detection can help to diagnose specific illnesses
- Our sensor can detect:
  - Toxins
  - Bacterial biomarkers
  - DNA/RNA
  - Cholesterol
  - Cancer markers





# The Challenges

- Remote settings
- Lack of resources
- Time to diagnosis
- Sample (blood) needs to be processed before sensor can detect biomarkers





## **The Solution**

3 drop of blood infection bacterial measurement applied to taken in result assay performed assay cartridge sensor Signal Detection antibody Bacterial biomarker Waveguide



### The Solution



- Separation of serum from blood on microfluidic chip
  - Automated sample processing
  - Low volume requirements
  - No laboratory expertise needed



# **The Solution**





#### The Outcome

- Diagnosis from a single sample type blood
- Early diagnosis
  - guides treatment decisions
  - monitors prognosis
- Human and veterinary applications
- Distinguish between bacterial and viral infections
  - Very important for prescription decisions
  - Overuse/misuse of antibiotics can lead to antibiotic resistance!





## **Takeaways**

- In the field of biomedical research, being adaptable is one of the greatest skills to have
- Being involved on multiple projects typically requires the learning of new skills
  - Literature review
  - Practice experiments
  - Consulting with experts



# **Questions**

kiersten@lanl.gov

